

SAFETY DATA SHEET

(REACH regulation (EC) n° 1907/2006 - n° 2020/878)

SECTION 1 : IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING

1.1. Product identifier

Product name : OWATROL SOLID COLOR STAIN Product code : scs02. (All tones)

1.2. Relevant identified uses of the substance or mixture and uses advised against Solid Finish for exterior wood

1.3. Details of the supplier of the safety data sheet

1.5. Details of the supplier of the safety data sheet

Registered company name : DURIEU S.A.: Siège Social. Address : 2 bis, rue Charles de Gaulle.91070.BONDOUFLE.FRANCE. Telephone : + 33 (0)1.60.86.48.70. Fax : + 33 (0)1.60.86.84.84. reglementaire@durieu.com www.durieu.com

1.4. Emergency telephone number : + 33 (0)1.45.42.59.59.

Association/Organisation : INRS / ORFILA www.centres-antipoison.net.

Other emergency numbers

UNITED KINGDOM :UK National poisons emergency number: +44 (0) 870 600 6266 IRELAND, EIRE: Ireland National Poisons Information Centre: +353 (0) 1 8379964 AUSTRALIA: Poison Information Centre: 131 126 NEW ZEALAND: Poison Information Centre 0 800 764 766:

SECTION 2 : HAZARDS IDENTIFICATION

2.1. Classification of the substance or mixture

In compliance with EC regulation No. 1272/2008 and its amendments.

May produce an allergic reaction (EUH208).

Hazardous to the aquatic environment - Chronic hazard, Category 3 (Aquatic Chronic 3, H412).

This mixture does not present a physical hazard. Refer to the recommendations regarding the other products present on the site.

2.2. Label elements

In compliance with EC regulation No. 1272/2008 and its amendments.

Additional labeling :	
EUH208	Contains 3-IODO-2-PROPYNYL BUTYLCARBAMATE (IPBC). May produce an allergic reaction.
EUH208	Contains REACTION MASS OF 5-CHLORO-2-METHYL-2H-ISOTHIAZOL-3-ONE AND
	2-METHYL-2H-ISOTHIAZOL-3-ONE (3:1). May produce an allergic reaction.
EUH211	Warning! Hazardous respirable droplets may be formed when sprayed. Do not breathe spray or
	mist.
Hazard statements :	
H412	Harmful to aquatic life with long lasting effects.
Precautionary statements - Ge	eneral :
P101	If medical advice is needed, have product container or label at hand.
P102	Keep out of reach of children.
Precautionary statements - Pr	evention :
P260	Do not breathe dust vapours.
P262	Do not get in eyes, on skin, or on clothing.
P273	Avoid release to the environment.
Precautionary statements - Re	esponse :
P301 + P330 + P331	IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.
Precautionary statements - Di	sposal :
P501	Dispose of contents / container in a waste collection point.

2.3. Other hazards

The mixture does not contain substances classified as 'Substances of Very High Concern' (SVHC) >= 0.1% published by the European CHemicals Agency (ECHA) under article 57 of REACH: http://echa.europa.eu/fr/candidate-list-table The mixture fulfils neither the PBT nor the vPvB criteria for mixtures in accordance with annexe XIII of the REACH regulations EC 1907/2006.

The mixture does not contain substances> = 0.1% with endocrine disrupting properties in accordance with the criteria of the Delegated Regulation (EU) 2017/2100 of the Commission or Regulation (EU) 2018/605 of the Commission.

SECTION 3 : COMPOSITION/INFORMATION ON INGREDIENTS

3.2. Mixtures

C

(EC) 1272/2008 GHS08 Wng Carc. 2, H351	[1] [10]	% 10 <= x % < 25
Wng		10 <= x % < 25
0	[10]	
Carc. 2, H351		
GHS08		2.5 <= x % < 10
-		
ECH.000		
	[1]	0.1 <= x % < 1
		0.1 <= x % < 0.5
-		
Eye Dam. 1, H318		
Acute Tox. 3, H331		
STOT RE 1, H372		
Aquatic Acute 1, H400		
M Acute = 10		
Aquatic Chronic 1, H410		
M Chronic = 1		
GHS07	[1]	0 <= x % < 0.05
	L.1	
0		
Skin Irrit. 2, H315		
		0 = x 0 = 0.05
	В	0 <= x % < 0.05
-		
,		
Eye Dam. 1, H318		
Acute Tox. 2, H330		
Aquatic Acute 1, H400		
M Acute = 100		
Aquatic Chronic 1, H410		
M Chronic = 100		
EUH:071		
	Aquatic Acute 1, H400 M Acute = 10 Aquatic Chronic 1, H410 M Chronic = 1 GHS07 Wng Eye Irrit. 2, H319 Skin Irrit. 2, H315 GHS06, GHS05, GHS09 Dgr Acute Tox. 3, H301 Acute Tox. 2, H310 Skin Corr. 1C, H314 Skin Sens. 1A, H317 Eye Dam. 1, H318 Acute Tox. 2, H330 Aquatic Acute 1, H400 M Acute = 100 Aquatic Chronic 1, H410 M Chronic = 100	Dgr Asp. Tox. 1, H304 EUH:066 [1] GHS06, GHS05, GHS09, GHS08 [1] Dgr Acute Tox. 4, H302 Skin Sens. 1, H317 Eye Dam. 1, H318 Acute Tox. 3, H331 STOT RE 1, H372 Aquatic Acute 1, H400 M Acute = 10 Aquatic Chronic 1, H410 M Chronic = 1 GHS07 [1] Wng Eye Irrit. 2, H315 GHS06, GHS05, GHS09 B Dgr Acute Tox. 3, H301 Acute Tox. 2, H310 Skin Corr. 1C, H314 Skin Sens. 1A, H317 Eye Dam. 1, H318 Acute Tox. 2, H310 Skin Corr. 1C, H314 Skin Sens. 1A, H317 Eye Dam. 1, H318 Acute Tox. 2, H330 Aquatic Acute 1, H400 M Acute = 100 Aquatic Chronic 1, H410 M Acute Tox. 2, H330 Aquatic Acute 1, H400 M Acute Tox 0 Acute Tox 0

			1	
INDEX: 350	GHS09		[1]	0 <= x % < 0.05
CAS: 128-37-0	Wng			
EC: 204-881-4	Aquatic Acute 1, H400			
REACH: 01-2119565113-46-XXXX	M Acute = 1			
	Aquatic Chronic 1, H410			
2,6-DI-TERT-BUTYL-P-CRESOL	M Chronic = 1			
pecific concentration limits:				
Identification	Specific concentration limits	A	TE	
INDEX: PCP226		0	ral: ATE = 2	2000 mg/kg BW
CAS: 57-55-6				
EC: 200-338-0				
REACH: 01-2119456809-23-XXXX				
PROPANE-1,2-DIOL				
INDEX: 061		OI	ral: ATE = 1	056 mg/kg BW
CAS: 55406-53-6				
EC: 259-627-5				
REACH: 01-2120762115-60-XXXX				
3-IODO-2-PROPYNYL				
BUTYLCARBAMATE (IPBC)				
INDEX: 603-053-00-3	Skin Irrit. 2: H315 >=10%			
CAS: 107-41-5	Eye Irrit. 2: H319 C>= 10%			
EC: 203-489-0				
REACH: 01-2119539582-35				
2-METHYLPENTANE-2,4-DIOL				
INDEX: 613-167-00-5	Skin Corr. 1C: H314 C>= 0.6%			
CAS: 55965-84-9	Skin Irrit. 2: H315 0.06% <= C <			
	0.6%			
REACTION MASS OF	Eye Dam. 1: H318 C>= 0.6%			
5-CHLORO-2-METHYL-2H-ISOTHIAZOL	Eye Irrit. 2: H319 0.06% <= C < 0.6%			
-3-ONE AND	Skin Sens. 1A: H317 C>= 0.0015%			
2-METHYL-2H-ISOTHIAZOL-3-ONE				

(04.04.0000)

Information on ingredients :

(Full text of H-phrases: see section 16)

[1] Substance for which maximum workplace exposure limits are available.

Note 10: The classification as a carcinogen by inhalation applies only to mixtures in powder form containing 1 % or more of titanium dioxide which is in the form of or incorporated in particles with aerodynamic diameter <= 10 µm.

SECTION 4 : FIRST AID MEASURES

As a general rule, in case of doubt or if symptoms persist, always call a doctor.

NEVER induce swallowing by an unconscious person.

4.1. description of first aid measures

In the event of exposure by inhalation :

In the event of an allergic reaction, seek medical attention.

If a large quantity is inhaled, move the patient to the fresh air.

In the event of splashes or contact with eyes :

Wash thoroughly with soft clean water for 15mn holding the eyelids open.

Refer to an ophthalmologist in particular if there is any redness, pain or visual impair.

In the event of splashes or contact with skin :

In the event of an allergic reaction, seek medical attention. Wash thoroughly with soft clean water.

In the event of swallowing :

Seek medical attention, showing the label.

4.2. Most important symptoms and effects, both acute and delayed

No data available.

4.3. Indication of any immediate medical attention and special treatment needed

SECTION 5 : FIREFIGHTING MEASURES

This product is not classed as flammable.

5.1. Extinguishing media

Suitable methods of extinction

- In the event of a fire, use :
- multipurpose ABC powder
- foam
- carbon dioxide (CO2)
- sprayed water or water mist
- water with AFFF (Aqueous Film Forming Foam) additive
- water

Alcohol resistant foam, CO2, Dry chemical powder.

Unsuitable methods of extinction

Direct water jet.

5.2. Special hazards arising from the substance or mixture

A fire will often produce a thick black smoke. Exposure to decomposition products may be hazardous to health.

Do not breathe in smoke.

In the event of a fire, the following may be formed :

- carbon monoxide (CO)

- carbon dioxide (CO2)
- nitrogen oxide (NO)
- nitrogen dioxide (NO2)

5.3. Advice for firefighters

No data available.

SECTION 6 : ACCIDENTAL RELEASE MEASURES

6.1. Personal precautions, protective equipment and emergency procedures

Consult the safety measures listed under headings 7 and 8.

For first aid worker

First aid workers will be equipped with suitable personal protective equipment (See section 8).

6.2. Environmental precautions

Contain and control the leaks or spills with non-combustible absorbent materials such as sand, earth, vermiculite, diatomaceous earth in drums for waste disposal.

Prevent any material from entering drains or waterways.

6.3. Methods and material for containment and cleaning up

Clean preferably with a detergent, do not use solvents.

6.4. Reference to other sections

No data available.

SECTION 7 : HANDLING AND STORAGE

Requirements relating to storage premises apply to all facilities where the mixture is handled.

7.1. Precautions for safe handling

Always wash hands after handling.

Remove and wash contaminated clothing before re-using.

Avoid getting on skin or in eyes when handling product.

Fire prevention :

Prevent access by unauthorised personnel.

Recommended equipment and procedures :

For personal protection, see section 8.

Observe precautions stated on label and also industrial safety regulations.

Prohibited equipment and procedures :

No smoking, eating or drinking in areas where the mixture is used.

- 7.2. Conditions for safe storage, including any incompatibilities
- Stock between +5°C and +30°C in a dry, well ventilated place.

Storage

Keep out of reach of children.

Packaging

Always keep in packaging made of an identical material to the original.

Recommended types of packaging :

- Vats
- Buckets

Suitable packaging materials :

- Coated steel

Unsuitable packaging materials :

- Steel

- Metal

7.3. Specific end use(s)

No data available.

SECTION 8 : EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1. Control parameters

Occupational exposure limits :

- France (INRS - Outils 65 / 2021-1849, 2021-1763, decree of 09/12/2021) :

CAS	VME-ppm :	VME-mg/m3 :	VLE-ppm :	VLE-mg/m3 :	Notes :	TMP No :
13463-67-7	-	10	-	-	-	-
107-41-5	-	-	25	125	-	84
128-37-0	-	10	-	-	-	-

- UK / WEL (Workplace exposure limits, EH40/2005, Fourth Edition 2020) :

CAS	TWA :	STEL :	Ceiling :	Definition :	Criteria :
13463-67-7	4 mg/m ³				
57-55-6	10 mg/m ³				
107-41-5	25 ppm	25 ppm			
	123 mg/m ³	123 mg/m ³			
128-37-0	10 mg/m ³				

8.2. Exposure controls

Personal protection measures, such as personal protective equipment

Use personal protective equipment that is clean and has been properly maintained.

Store personal protective equipment in a clean place, away from the work area.

Never eat, drink or smoke during use. Remove and wash contaminated clothing before re-using. Ensure that there is adequate ventilation, especially in confined areas.

- Eye / face protection

Avoid contact with eves.

Les ave pretectors designed to p

Use eye protectors designed to protect against liquid splashes Before handling, wear safety goggles in accordance with standard EN166.

Hand protection

Use suitable protective gloves that are resistant to chemical agents in accordance with standard EN ISO 374-1.

Gloves must be selected according to the application and duration of use at the workstation.

Protective gloves need to be selected according to their suitability for the workstation in question : other chemical products that may be handled, necessary physical protections (cutting, pricking, heat protection), level of dexterity required.

Type of gloves recommended :

- Natural latex
- Nitrile rubber (butadiene-acrylonitrile copolymer rubber (NBR))
- PVC (polyvinyl chloride)

- Butyl Rubber (Isobutylene-isoprene copolymer)

- Body protection

Work clothing worn by personnel shall be laundered regularly.

After contact with the product, all parts of the body that have been soiled must be washed.

Respiratory protection

Category :

- FFP2

Type of mask with combined filters :

Wear a half mask in accordance with standard EN140.

Anti-gas and vapour filter(s) (Combined filters) in accordance with standard EN14387 :

- A1 (Brown)

- AX (Brown)

Particle filter according to standard EN143 : - P2 (White)

SECTION 9 : PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on basic physical and chemical properties

Physical state	
Physical state :	Fluid liquid.
Colour	
Colour :	Depend on tones
Odour	
Odour threshold :	Not stated.
odours :	small
Melting point	
Melting point/melting range :	Not relevant.
Freezing point	
Freezing point / Freezing range :	Not stated.
Boiling point or initial boiling point and boiling range	
Boiling point/boiling range :	Not relevant.
Flammability	
Flammability (solid, gas) :	Not stated.
Lower and upper explosion limit	1
Explosive properties, lower explosivity limit (%) :	Not stated.
Explosive properties, upper explosivity limit (%) :	Not stated.
Flash point	
Flash point interval :	Not relevant.
Auto-ignition temperature	
Self-ignition temperature :	Not relevant.
Decomposition temperature	
Decomposition point/decomposition range :	Not relevant.
pH	
pH (aqueous solution) :	Not stated.
pH:	8.50 .
P	Slightly basic.
Kinematic viscosity	
Viscosity :	Not stated.
Solubility	
Water solubility :	Dilutable.
Fat solubility :	Not stated.
Partition coefficient n-octanol/water (log value)	
Partition coefficient: n-octanol/water :	Not stated.
Vapour pressure	
Vapour pressure (50°C) :	Not relevant.
Density and/or relative density	
Density :	>1
Relative vapour density	
Vapour density :	>1
9.2. Other information	
VOC (g/l) :	129
% VOC :	<11
9.2.1. Information with regard to physical hazard classes	

No data available.

9.2.2. Other safety characteristics

No data available.

SECTION 10 : STABILITY AND REACTIVITY

10.1. Reactivity

No data available.

10.2. Chemical stability

This mixture is stable under the recommended handling and storage conditions in section 7.

10.3. Possibility of hazardous reactions

No data available.

10.4. Conditions to avoid

Avoid :

- frost

10.5. Incompatible materials

No data available.

10.6. Hazardous decomposition products

The thermal decomposition may release/form :

- carbon monoxide (CO)

- carbon dioxide (CO2)

- nitrogen oxide (NO)

- nitrogen dioxide (NO2)

SECTION 11 : TOXICOLOGICAL INFORMATION

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Repeated or prolonged contact with the mixture may cause removal of natural fat from the skin resulting in non-allergic contact dermatitis and absorption through the skin.

11.1.1. Substances

Acute toxicity :

R

 \sim

3-IODO-2-PROPYNYL BUTYLCARBAMATE (IPBC) (C Oral route :	CAS: 55406-53-6) LD50 = 1056 mg/kg Species : Rat OCDE Ligne directrice 401 (Toxicité aiguë par voie orale)
Dermal route :	LD50 > 2000 mg/kg Species : Rat OCDE Ligne directrice 402 (Toxicité aiguë par voie cutanée)
PROPANE-1,2-DIOL (CAS: 57-55-6)	
Oral route :	LD50 = 22000 mg/kg Species : Rat
Dermal route :	LD50 > 2000 mg/kg Species : Rabbit
Inhalation route (Dusts/mist) :	LC50 > 315642 mg/l Species : Rabbit
HYDROCARBONS, C10-C13, N-ALKANES, ISOALKA Oral route :	NES, CYCLICS, <2% AROMATICS (CAS: 64742-48-9) LD50 > 5000 mg/kg Species : Rat OCDE Ligne directrice 401 (Toxicité aiguë par voie orale)
Dermal route :	LD50 > 5000 mg/kg Species : Rabbit OCDE Ligne directrice 402 (Toxicité aiguë par voie cutanée)
Inhalation route (Vapours) :	LC50 > 5000 mg/l Species : Rat OCDE Ligne directrice 403 (Toxicité aiguë par inhalation)
Respiratory or skin sensitisation :	
PROPANE-1,2-DIOL (CAS: 57-55-6)	
Local lymph node stimulation test :	Non-Sensitiser. Species : Rabbit OCDE Ligne directrice 406 (Sensibilisation de la peau)

OCDE Ligne directrice 406 (Sensibilisation de la peau)

OCDE Ligne directrice 406 (Sensibilisation de la peau)

Germ cell mutagenicity :

HYDROCARBONS, C10-C13, N-ALKANES, ISOALKANES, CYCLICS, <2% AROMATICS (CAS: 64742-48-9) No mutagenic effect.

Carcinogenicity :

HYDROCARBONS, C10-C13, N-ALKANES, ISOALKANES, CYCLICS, <2% AROMATICS (CAS: 64742-48-9) Carcinogenicity Test : Negative. No carcinogenic effect.

Reproductive toxicant :

HYDROCARBONS, C10-C13, N-ALKANES, ISOALKANES, CYCLICS, <2% AROMATICS (CAS: 64742-48-9) No toxic effect for reproduction

OCDE Ligne directrice 414 (Étude de la toxicité pour le développement prénatal)

11.1.2. Mixture

Respiratory or skin sensitisation :

Contains at least one sensitising substance. May cause an allergic reaction.

11.2. Information on other hazards

Monograph(s) from the IARC (International Agency for Research on Cancer) :

CAS 128-37-0 : IARC Group 3 : The agent is not classifiable as to its carcinogenicity to humans. CAS 13463-67-7 : IARC Group 2B : The agent is possibly carcinogenic to humans.

SECTION 12 : ECOLOGICAL INFORMATION

Harmful to aquatic life with long lasting effects.

The product must not be allowed to run into drains or waterways.

12.1. Toxicity

Insufficient data.

12.1.1. Substances

3-IODO-2-PROPYNYL BUTYLCARBAMATE (IPBC) (CAS: 55406-53-6) Fish toxicity : LC50 = 0.067 mg/l Species : Others

Duration of exposure : 96 h

NOEC = 0.0084 mg/l Factor M = 1 Species : Pimephales promelas Duration of exposure : 35 jours

EC50 = 0.16 mg/l Species : Daphnia magna Duration of exposure : 48 h

EC50 mg/l Species : Daphnia magna Duration of exposure : 21 jours

Species : Others

Algae toxicity :

Crustacean toxicity :

ECr50 = 0.022 mg/l Species : Scenedesmus subspicatus Duration of exposure : 72 h

NOEC = 0.0046 mg/l Factor M = 1

SAFETY DATA SHEET (REGULATION (EC) n° 1907/20 OWATROL SOLID COLOR STAIN - SCS02	006 - REACH) Version 10.1 (31-01-2023) - Page 9/1
	Species : Scenedesmus subspicatus
PROPANE-1,2-DIOL (CAS: 57-55-6)	
Fish toxicity :	LC50 = 40613 mg/l
	Species : Oncorhynchus mykiss
	Duration of exposure : 96 h
	OCDE Ligne directrice 203 (Poisson, essai de toxicité aiguë)
Crustacean toxicity :	EC50 = 18340 mg/l
	Species : Ceriodaphnia dubia
	Duration of exposure : 48 h
	OCDE Ligne directrice 202 (Daphnia sp., essai d'immobilisation immédiate)
Algae toxicity :	ECr50 = 19000 mg/l
	Species : Pseudokirchnerella subcapitata
	Duration of exposure : 96 h
	OCDE Ligne directrice 201 (Algues, Essai d'inhibition de la croissance)
	LKANES, CYCLICS, <2% AROMATICS (CAS: 64742-48-9)
Fish toxicity :	LC50 = 1000 mg/l
	Species : Oncorhynchus mykiss
	Duration of exposure : 96 h
Crustacean toxicity :	EC50 = 1000 mg/l
	Species : Daphnia magna
	Duration of exposure : 48 h
Algae toxicity :	ECr50 = 1000 mg/l
	Species : Pseudokirchnerella subcapitata
	Duration of exposure : 72 h
12.1.2. Mixtures	
12.2. Persistence and degradability	
Insufficient data.	
12.2.1. Substances	
3-IODO-2-PROPYNYL BUTYLCARBAMATE (IPBC	C) (CAS: 55406-53-6)
Biodegradability :	Rapidly degradable.
PROPANE-1,2-DIOL (CAS: 57-55-6)	
Biodegradability :	no degradability data is available, the substance is considered as not
	degrading quickly.
	LKANES, CYCLICS, <2% AROMATICS (CAS: 64742-48-9)
Biodegradability :	Rapidly degradable.
12.2.2. Mixtures	
Biodegradation :	No data on decomposition is available, the mixture is not considered to
	decompose rapidly.
12.3. Bioaccumulative potential	
12.3.1. Substances	
3-IODO-2-PROPYNYL BUTYLCARBAMATE (IPBC Octanol/water partition coefficient :	C) (CAS: 55406-53-6) log Koe = 2.81
12.4. Mobility in soil	
Contains volatile products that will disperse in air.	
Contains a solid phase.	
This product is dilutable in water in all proportion.	
12.5. Results of PBT and vPvB assessment	
No data available.	
12.6. Endocrine disrupting properties	

12.6. Endocrine disrupting properties

2

2

No data available.

12.7. Other adverse effects

No data available.

SECTION 13 : DISPOSAL CONSIDERATIONS

Proper waste management of the mixture and/or its container must be determined in accordance with Directive 2008/98/EC.

13.1. Waste treatment methods

Do not pour into drains or waterways.

Waste :

Waste management is carried out without endangering human health, without harming the environment and, in particular without risk to water, air, soil, plants or animals.

Recycle or dispose of waste in compliance with current legislation, preferably via a certified collector or company.

Do not contaminate the ground or water with waste, do not dispose of waste into the environment.

Soiled packaging :

Empty container completely. Keep label(s) on container.

Give to a certified disposal contractor.

Codes of wastes (Decision 2014/955/EC, Directive 2008/98/EEC on hazardous waste) :

15 01 10 * packaging containing residues of or contaminated by dangerous substances

08 01 11 * waste paint and varnish containing organic solvents or other dangerous substances

SECTION 14 : TRANSPORT INFORMATION

Exempt from transport classification and labelling.

14.1. UN number or ID number

- 14.2. UN proper shipping name
- 14.3. Transport hazard class(es)
- -
- 14.4. Packing group
- 14.5. Environmental hazards
- -
- 14.6. Special precautions for user
- 14.7. Maritime transport in bulk according to IMO instruments

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

- Classification and labelling information included in section 2:

The following regulations have been used:

- EU Regulation No. 1272/2008 amended by EU Regulation No. 2022/692 (ATP 18)

- Container information:

The mixture does not contain any substance restricted under Annex XVII of Regulation (EC) No. 1907/2006 (REACH): https://echa.europa.eu/substances-restricted-under-reach.

- Labelling for VOCs present in varnishes, paints and in vehicle refinishing products (2004/42/EC) :

The permitted European level of VOC in this ready-to-use product is limited to 129 g/l.

The permitted European levels of VOC in the ready-to-use product (category IIAe) are 150 g/l maximum in 2007 and 130 g/l maximum in 2010. - Particular provisions :

No data available.

15.2. Chemical safety assessment

No data available.

SECTION 16 : OTHER INFORMATION

Since the user's working conditions are not known by us, the information supplied on this safety data sheet is based on our current level of

knowledge and on national and community regulations.

The mixture must not be used for other uses than those specified in section 1 without having first obtained written handling instructions. It is at all times the responsibility of the user to take all necessary measures to comply with legal requirements and local regulations. The information in this safety data sheet must be regarded as a description of the safety requirements relating to the mixture and not as a guarantee of the properties thereof.

2

Wording of the phrases mentioned in section 3 :

-	-
H301	Toxic if swallowed.
H302	Harmful if swallowed.
H304	May be fatal if swallowed and enters airways.
H310	Fatal in contact with skin.
H314	Causes severe skin burns and eye damage.
H315	Causes skin irritation.
H317	May cause an allergic skin reaction.
H318	Causes serious eye damage.
H319	Causes serious eye irritation.
H330	Fatal if inhaled.
H331	Toxic if inhaled.
H351	Suspected of causing cancer .
H372	Causes damage to organs through prolonged or repeated exposure .
H400	Very toxic to aquatic life.
H410	Very toxic to aquatic life with long lasting effects.
EUH066	Repeated exposure may cause skin dryness or cracking.
EUH071	Corrosive to the respiratory tract.

Abbreviations :

LD50 : The dose of a test substance resulting in 50% lethality in a given time period.

LC50 : The concentration of a test substance resulting in 50% lethality in a given period.

EC50 : The effective concentration of substance that causes 50% of the maximum response.

ECr50 : The effective concentration of substance that causes 50% reduction in growth rate.

NOEC : The concentration with no observed effect.

REACH : Registration, Evaluation, Authorization and Restriction of Chemical Substances.

ATE : Acute Toxicity Estimate

BW : Body Weight

STEL : Short-term exposure limit

TWA : Time Weighted Averages

TMP : French Occupational Illness table

TLV : Threshold Limit Value (exposure)

AEV : Average Exposure Value.

ADR : European agreement concerning the international carriage of dangerous goods by Road.

IMDG : International Maritime Dangerous Goods.

IATA : International Air Transport Association.

ICAO : International Civil Aviation Organisation

RID : Regulations concerning the International carriage of Dangerous goods by rail.

WGK : Wassergefahrdungsklasse (Water Hazard Class).

PBT: Persistent, bioaccumulable and toxic.

vPvB : Very persistent, very bioaccumulable.

SVHC : Substances of very high concern.